ОТЗЫВ

на автореферат диссертации Лутошкина Максима Александровича «Состав, строение и свойства новых функциональных материалов и металлокомплексов, полученных на основе полифенолов растительной биомассы», представленной на соискание ученой степени кандидата химических наук по специальности 1.4.4 — Физическая химия

Диссертационная работа Лутошкина Максима Александровича посвящена изучению строения и свойств лигнинов хвойной и лиственной древесины, а также созданию новых методов их переработки в востребованные ценные продукты и материалы. Актуальность разработки новых подходов к использованию как правило невостребованных лигнинов, расширение спектра ценных продуктов за их счет и в целом необходимость углубления переработки древесного сырья не вызывают сомнений. В работе решался широкий спектр задач, который включал исследование состава и свойств лигнинов с привлечением различных методов анализа, разработку способа сульфатирования этаноллигнинов с подбором оптимальных условий для данного процесса, демонстрацию возможности химической модификации этаноллигнинов за счет теломеризации с 1,3-бутадиеном в присутствии комплексного соединения на основе Pd(II) в качестве катализатора. Кроме того, в задачи работы входила разработка методов получения ксерогелей за счет конденсации таннинов, этаноллигнинов и формальдегида с последующей карбонизацией ксерогелей в углеродные гели. Наконец, отдельное направление работы было посвящено изучению устойчивости хелатных комплексов редкоземельных металлов с флавоноидами, в том числе включало применение методов квантово-химического моделирования. Проведенное исследование позволило получить большой массив данных по константам устойчивости указанных комплексов, что представляет несомненный интерес для повышения эффективности выделения и концентрирования редкоземельных элементов. Для достижения поставленных задач автором использован грамотный набор физико-химических методов, включая ¹³Р-ЯМР, двумерную ЯМР-спектроскопию на связанных ядрах ¹Н и ¹³С, инфракрасную спектроскопию, сканирующую электронную микроскопию, термогравиметрический анализ в инертной и окислительной средах, гель-проникающую хроматографию и др. Применение данных современных физико-химических методов позволяет судить о достоверности и высокой ценности экспериментальных данных, изложенных в работе, а их анализ и уровень обсуждения позволяет уверенно говорить о полном выполнении заявленных диссертантом целей и задач.

Текст автореферата производит благоприятное впечатление, хорошо структурирован, при ознакомлении с ним возникло лишь несколько небольших замечаний и вопросов:

- 1. В части, посвященной исследованию состава и строения этаноллигнинов в древесине хвойных и лиственных пород, стоило бы для ясности упомянуть процедуру фосфорилирования гидроксильных групп перед последующей регистрацией сигналов в спектрах ³¹Р-ЯМР, что позволяет селективно изучать гидроксильные группы в составе анализируемых образцов.
- 2. На стр. 12 в результате проведенного исследования автор указывает на увеличение молекулярной массы и уменьшение полидисперсности этаноллигнина пихты после сульфатирования. Можно ли предложить этому какие-то объяснения, каким образом взаимодействие с сульфатирующим агентом приводит именно к таким эффектам?

3. Автореферат написан грамотным научным языком, однако, не лишен небольшого количества пунктуационных и орфографических ошибок.

Схема 1 включает подписи на иностранном языке, чего следовало бы избежать.

Отсутствует единообразие в представлении единиц измерения температуры (изображение градусов Цельсия), аналогично при упоминании двумерной ЯМР-спектроскопии встречаются обозначения 2Д и 2D.

В подписи к рисунку 4, в части «характер распределения объема от их диаметра» пропущено слово «пор».

На стр. 18 упоминается рисунок 8, хотя его нет в автореферате и скорее всего имелся в виду рисунок 7.

Данные замечания не влияют на общую положительную оценку диссертационной работы М.А. Лутошкина и не умаляют ее высокой актуальности, научной и практической ценности, что подтверждается наличием 8 публикаций в отечественных и зарубежных научных изданиях. Проведенное исследование можно со всей уверенностью квалифицировать как новый вклад в развитие направления переработки биоресурсов с целью получения востребованных химических продуктов и материалов.

Таким образом, представленная диссертационная работа соответствует всем требованиям, предъявляемым к кандидатским диссертациям, а соискатель, Лутошкин Максим Александрович, заслуживает присуждения ученой степени кандидата химических наук по специальности 1.4.4 — Физическая химия.

В.А. Яковлев

М.В. Алексеева

М.О. Казаков

Руководитель Инжинирингового центра Института катализа СО РАН, д-р хим. наук

Научный сотрудник Инжинирингового центра Института катализа СО РАН, канд. хим. наук

Подписи В.А. Яковлева и М.В. Алексеевой заверяю: Ученый секретарь Института катализа СО РАН, канд. хим. наук

«03» марта 2022 года

Яковлев Вадим Анатольевич

Руководитель Инжинирингового центра

ФГБУН «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук» (ИК СО РАН)

630090.

ск, пр. Академика Лаврентьева, д. 5

Тел.: +7

50,

e-mail:

lysis.ru

Алексеева Мария Валерьевна

Научный сотрудник Инжинирингового центра

ФГБУН «Федеральный исследовательский центр «Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук» (ИК СО РАН)

630090

оск, пр. Академика Лаврентьева, д. 5

Тел.: +

567.

e-mail:

ysis.ru