УТВЕРЖДАЮ

Первый проректор по стратегическому развитию и науке ФГАОУ ВО «Северный (Арктический) федеральный университет имени М. В. Ломоносова» доктор технических наук, доцент Павел Андреевич Марьяндышев

ОТЗЫВ ВЕДУЩЕЙ ОРГАНИЗАЦИИ

ФГАОУ ВО «Северный (Арктический) федеральный университет имени М.В. Ломоносова» на диссертационную работу Вигуля Дмитрия Олеговича «Физикохимические основы каталитического окисления древесного сырья и отходов агропромышленного комплекса в ароматические альдегиды», представленную на соискание ученой степени кандидата химических наук по специальности 1.4.4 – физическая химия

Актуальность темы диссертационной работы

Тенденции переработки растительного сырья на современном этапе развития широко используют стратегии биорефайнинга. В последнее время все чаще используется концепция "Lignin first", согласно которой лигнины перерабатываются в полезные продукты. Бережное отношение к окружающей среде также требует разработки и внедрения новых безопасных и малоотходных технологий с использованием процессов окисления лигнина в качестве первой стадии переработки лигноцеллюлозных материалов.

К таким технологиям можно отнести процессы получения ванилина и сиреневого альдегида из технических лигнинов и других отходов, получаемых в агропромышленном комплексе. Задачи переработки отходов сельского и лесного хозяйства в малотоннажные химические продукты с высокой добавленной стоимостью являются несомненно актуальными. В качестве таких продуктов можно рассматривать ароматические альдегиды, получаемые окислением лигнинов различных растений, ванилин и сиреневый альдегид.

Диссертационная работа Вигуля Дмитрия Олеговича направленна на решение указанных проблем и посвящена установлению физико-химических

Получено ИХХТ СО РАН 13 слеврание 2029 BX09 Nº 287.8-23-04

закономерностей процессов окисления лигнинсодержащего сырья в ароматические альдегиды и другие ценные продукты.

Соискатель Вигуль Дмитрий Олегович провел оригинальное научное исследование, обеспечивающее комплексное решение поставленной задачи. Для достижения поставленной цели соискателем решались задачи:

1. Изучить кинетическую неоднородность нативного лигнина сосны в процессе каталитического окисления древесины в ванилин и целлюлозу, а также влияние кислотного предгидролиза лигноцеллюлозного сырья на неоднородность лигнина и эффективность процесса получения ароматических альдегидов.

2. Поиск возможностей снижения расхода щелочи в процессах окисления нативных лигнинов в ванилин.

3. Исследовать влияние интенсивности массопереноса на кинетику процессов окисления лигноцеллюлозного сырья в ароматические альдегиды и целлюлозу.

4. Изучить особенности переработки сельскохозяйственных и лесопромышленных отходов с высоким содержанием лигнина в ароматические альдегиды и целлюлозу

Из вышесказанного следует, что актуальность диссертационной работы Вигуля Дмитрия Олеговича не вызывает сомнений. В диссертационной работе показано, что нативный лигнин древесины сосны кинетически неоднороден в процессе его окисления в ванилин: фракции лигнина, образующие ванилин, окисляются быстрее конденсированных фракций, не дающих ванилин при окислении, что является наиболее важным результатом.

Объем и структура диссертации

Диссертационная работа Вигуля Д.О. изложена на 110 страницах машинописного текста, содержит все обязательные составляющие для такого уровня исследований и включает введение, литературный обзор, характеристику объектов и методов исследования, экспериментальную часть, где обсуждаются полученные результаты, общие выводы и список цитируемой литературы, состоящий из 132 источников.

Во введении представлено обоснование темы исследования, сформулированы цель и задачи работы, ее научная новизна и практическая значимость, сформулированы положения, выносимые на защиту. Дана характеристика личного вклада соискателя в выполнение исследования.

В обзоре литературы рассмотрены общие сведения о строении лигнинов, отличиях лигнинов различных растений, что представляется важным для рассмотрения последующих вопросов. Представлены данные, полученные другими исследователями по окислению лигнинов. В частности по окислению лигнинов нитробензолом и кислородом в присутствии катализаторов. При этом данные удачно представляются в виде сводных таблиц, что позволяет их сравнивать между собой. Рассмотрены вопросы влияния различных факторов на выход ароматических альдегидов в процессе каталитического окисления кислородом. Показаны

кинетические закономерности окисления ЛИГНИНОВ. Подробно разобраны механизмы окисления лигнинов. Обсуждены вопросы повышенного расхода кислорода и щелочи при окислении лигнинов. Показано влияние интенсивности массопереноса реагентов на скорость и селективность процесса каталитического окисления кислородом лигнинов. Наглядно представлено влияние диффузионного и кинетического режимов на селективность окисления лигнинов. В заключении литературного обзора соискатель представляет основные моменты критического анализа литературы, ИЗ которых вытекают основные задачи данного диссертационного исследования.

В экспериментальной части работы описано используемое сырье и реактивы, приведено описание исходных материалов, выбранных соискателем для проведения исследования. Описаны методы предварительно гидролиза субстратов, методика каталитического окисления кислородом сырья, методика каталитического окисления кислородом сырья, методика каталитического окисления древесины сосны в три последовательные стадии, показана схема установки для каталитического окисления растительного сырья. Приведены методы анализа продуктов каталитического окисления и реакционной массы. Описано оборудование и режимы его применения.

Глава 3 содержит результаты и обсуждение. В данной главе изучено влияние кислотного предгидролиза и каталитического окисления древесины сосны, в частности влияние условий процесса предгидролиза на удаление гемицеллюлоз из древесины сосны, влияние условий предгидролиза на выход ванилина и расход щелочи в процессе окисления, влияние предгидролиза на выход целлюлозы и лигнина в процессе окисления лигноцеллюлозы, стехиометрия процессов предгидролиза и окисления, а так же рассмотрены причины снижения расхода щелочи в результате предгидролиза.

Далее изучена неоднородность лигнина в процессе образования ванилина. Показано, что нативный лигнин сосны в процессе окисления в ванилин кинетически неоднороден. Первая фракция более активна и дает основную часть ванилина. Вторая менее активная фракция — остаточный лигнин, окисляется значительно медленнее и дает меньше ванилина по сравнению с первой. Показано, что в результате мягкого кислотно-каталитического гидролиза происходит дополнительная дифференциация лигнина. Сочетанием предгидролиза И трехступенчатого проведения процесса окисления кислородом впервые достигнут выход ванилина, совпадающий с классическими данными по нитробензольному окислению.

Проведено исследование влияния интенсивности массопереноса на процесс каталитического окисления костры льна кислородом в ароматические альдегиды и целлюлозу. В частности, исследовано окисление как исходной костры льна, так и предгидролизованной костры. Изучено влияние объема реакционной массы в реакторе на скорость поглощения кислорода в процессах окисления. Исследовано влияние загрузки щелочи и скорости перемешивания на выход ванилина и потребление кислорода в процессе окисления костры льна. Данные исследования

проведены с использованием оригинальной установки для каталитического окисления растительного сырья, схема которой представлена в предыдущей главе.

Проведено сравнение результатов окисления различных лигнинсодержащих субстратов. В частности, исследовано каталитическое окисление коры кедра и травянистых субстратов. Показано, что содержание в древесной коре дубильных веществ завышает результаты определения лигнина традиционным методом.

В разделе «Выводы» соискателем подведен итог выполненных исследований, сформулированы основные выводы, соответствующие поставленным целям и задачам.

Новизна исследования и полученных результатов

Научная новизна диссертации заключается в доказательстве кинетической неоднородности нативного лигнина древесины сосны в процессе её каталитического окисления в ванилин и целлюлозу. Доказано, что мягкий кислотный предгидролиз древесины приводит к дополнительной дифференциации лигнина на кинетически более и менее активные формы.

Определены причины низких выходов ванилина из лигнинов травянистых растений в сравнении с лигнином древесины сосны.

Впервые показано, что диффузионная кинетика окисления лигнинсодержащего сырья в ванилин и целлюлозу количественно описывается моделью, связывающей скорость окисления с плотностью мощности перемешивания.

Значимость для науки и производства результатов, полученных автором данной диссертационной работы, не вызывает сомнений. Впервые целенаправленно проведен успешный поиск возможностей сокращения расхода щелочи в процессах получения ванилина из лигнинов, и эти результаты применимы для утилизации отходов растительного сырья.

Показана целесообразность использования костры льна в качестве сырья для получения ванилина среди ряда изученных видов сельскохозяйственных отходов.

Установленные количественные закономерности влияния массопереноса на окисление костры льна получены впервые в области окисления лигнинов и могут быть использованы для снижения расхода кислорода и энергозатрат в технологических процессах получения ванилина из лигнина.

Рекомендации по использованию результатов и выводов диссертации

Полученные **Вигулем Д.О.** результаты представляют теоретический и практический интерес и могут быть использованы для создания новых технологий глубокой переработки различных видов древесины и травянистых растений, например, костры льна, в ароматические альдегиды и другие ценные продукты. Установленные закономерности влияния кислотного предгидролиза древесины и интенсивности массопереноса на процессы окисления растительного сырья могут быть использованы при чтении спецкурсов по химии древесины в соответствующих вузах, Северном (Арктическом) федеральном университете имени М.В. Ломоносова,

Сибирском федеральном университете, Санкт-Петербургском лесотехническом университете, Санкт-Петербургском государственном университете промышленных технологий и дизайна, Сибирском федеральном университете, Сибирском государственном университете науки и технологий имени академика М.Ф. Решетнева.

Степень обоснованности научных положений, выводов и рекомендаций, сформулированных в диссертации.

Для постановки и решения научных задач автор опирается на известные методы исследований в области химии древесины, а также современные инструментальные методы анализа (газо-жидкостной хроматографии, рентгеновской дифракции, элементного анализа, электронной микроскопии).

Обоснованность сделанных выводов подтверждается значительным экспериментальным материалом, применением современных расчетных и экспериментальных методов и оборудования, а также использованием стандартных методов проведения эксперимента с обработкой данных.

Научные положения, выводы и рекомендации, не противоречат известным положениям физической химии и базируются на воспроизводимых результатах и тщательном анализе литературных данных.

Достоверность полученных результатов подтверждается их удовлетворительным согласием с литературными данными. Сделанные заключения и выводы полностью соответствуют приведенным экспериментальным данным и хорошо обоснованы автором диссертационной работы.

Работа прошла хорошую апробацию. По результатам исследования опубликовано 18 научных работ, в том числе 4 рецензируемые статьи. Результаты диссертационной работы доложены и обсуждены на профильных конференциях всероссийского и международного уровня.

При прочтении диссертации Вигуля Дмитрия Олеговича возникли следующие вопросы и замечания:

1. Чем обусловлен выбор объектов исследования? Почему взято только 2 представителя костры льна? Если использование древесины сосны понятно, с точки зрения сравнения с отходами однолетних растений, то какая логика была в выборе коры кедра?

2. Во всех таблицах работы представлена информация без учета погрешности. Из работы не ясно количество параллельных измерений при проведении экспериментов.

3. Таблица 6 содержит компонентный состав исходных субстратов, в том числе указан процент лигнина для всех объектов. В частности, у коры кедра указано значение 17,9 %. Как это сочетается с таблицей 18, где указаны расчетные значения содержания лигнина (с поправкой, предложенной автором): 19,1 %. Какие значения верные? Насколько данное расхождение существенно (или нет)? Без статистических данных оценить не представляется возможным.

4. Белорусская и Тверская костры льна достаточно сильно отличаются друг от друга по химическому составу (таблица 13), как считает автор, будет ли сильно варьироваться химический состав у костры из других мест происхождения? Если да, то применимы ли подходы, предложенные автором, для костры, произрастающей в других местах?

5. Глава 3.5.1. содержит новый подход к оценке количества лигнина в сырье. При этом автор справедливо указывает, что при анализе сырья без предварительной экстракции возникает завышение результата. Однако, при водно-этанольной экстракции сырья будет происходить некоторая делигнификация, в силу чего возникает вопрос – возможно расчетное значение после экстракции занижено?

6. В работе встречаются неточности и опечатки. В частности, не все аббревиатуры имеют расшифровку (например, ГЖХ, СЭМ). Опечатка в латинском наименовании Сосны обыкновенной.

Высказанные замечания не снижают научной ценности выполненной работы и носят характер научной дискуссии. Из представленной работы видно, что **Вигуль Дмитрий Олегович** в ходе выполнения диссертационного исследования продемонстрировал профессионализм в таких областях как подготовка объектов для исследования, характеристика объектов исследования, подготовка и проведение эксперимента, интерпретация полученных экспериментальных данных, что свидетельствует о высокой квалификации соискателя и широком научном кругозоре.

Заключение о соответствии диссертации критериям, установленным Положением о порядке присуждения ученых степеней.

Диссертация **Вигуля Дмитрия Олеговича** написана грамотным научным языком, структура работы выстроена логично. Все приведенные выводы обоснованы и подтверждены экспериментальными результатами. Рассмотренная работа является целостным завершенным исследованием, в котором решена научная задача раскрытия закономерностей влияния кислотного предгидролиза и интенсивности массопереноса на процессы окисления лигноцеллюлозного сырья в ароматические альдегиды и использования установленных закономерностей для повышения эффективности изученных процессов. Решенная задача имеет существенное значение для области физической химии процессов переработки растительного сырья.

Личный вклад соискателя в решение научной задачи подтверждается публикациями, а также представлением результатов диссертационного исследования на научных конференциях всероссийского и международного уровня. Автореферат и опубликованные статьи достаточно полно отражают основное содержание диссертационной работы.

Содержание работы соответствует заявленной специальности. По полноте решенных задач работа соответствует требованиям ВАК, предъявляемым к кандидатским диссертациям на соискание ученой степени кандидат химических наук по специальности 1.4.4 – физическая химия.

Диссертация Вигуля Дмитрия Олеговича «Физико-химические основы каталитического окисления древесного сырья и отходов агропромышленного комплекса в ароматические альдегиды» по своей актуальности, научной новизне, обоснованности научных положений, выводов, практической значимости результатов представляет собой завершенную научно-квалификационную работу и полностью отвечает требованиям ВАК РФ (п.9-14 «Положения о присуждении ученых степеней», утвержденного постановлением Правительства РФ №842 от 24 сентября 2013 года), а ее автор Вигуль Д.О. заслуживает присуждения ученой степени кандидата химических наук по специальности 1.4.4 – физическая химия.

Отзыв на диссертацию и автореферат Вигуля Д.О. обсужден и одобрен на заседании научного семинара Центра коллективного пользования научным оборудованием «Арктика» (Северный (Арктический) федеральный университет имени М.В. Ломоносова), протокол № 1 от 15 января 2024 г.

Отзыв подготовлен заместителем директора ЦКП НО «Арктика» Северного (Арктического) федерального университета имени М.В. Ломоносова - руководителем сектора научных проектов, кандидатом химических наук, Кожевниковым Александром Юрьевичем.

Кожевников Александр Юрьевич « *✓* » февраля 2024 г.

Федеральное государственное автономное образовательное учреждение высшего образования «Северный (Арктический) федеральный университет имени М.В. Ломоносова»;

Адрес: 163002, г. Архангельск, наб. Северной Двины, д. 17, тел E-mail: <u>а</u>

VHO DODDUCK KOUCEBALLICOFO A.U ученый секретарь ученого совета САФУ Racec E.B. Раменская 20291.